174 research outputs found

    Use of HRMA Proteins and Their Genes for Broad Range Protection of Plants Against Bacterial, Fungal and Viral Pathogens

    Get PDF
    The use of an avr gene hrmA to induce systematic acquired resistance in plant cells, plant seeds, plant tissues and plants is disclosed. Also disclosed is the use of low level expression of promoters in combination with the hrmA gene to provide broad-spectrum pathogen resistance in plant cells, plant seeds, plant tissues and plants

    The biogeography of group sizes in humpback dolphins (Sousa spp.)

    Get PDF
    ACKNOWLEDGMENTS We are grateful to the organizations and people that have made contributions to scientific research on humpback dolphins. This study was financially supported by the Major Science and Technology Project in Hainan province (ZDKJ2016009‐1‐1), the National Natural Science Foundation of China (41306169, 41406182, and 41422604), the Ocean Park Conservation Foundation of Hong Kong (AW02‐1920), the Chinese White Dolphin Conservation Action Project of Ministry of Agriculture and Rural of People's Republic of China (Y760091HT1), and the Biodiversity Investigation, Observation and Assessment Program of Ministry of Ecology and Environment of China (2019–2023). The writing of this paper was supported in part by the China‐UK Newton Fund PhD Placement from British Council and China Scholarship Council.Peer reviewedPublisher PD

    Hearing pathways in the Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Experimental Biology 217 (2014): 444-452, doi:10.1242/​jeb.093773.How an animal receives sound may influence its use of sound. While ‘jaw hearing’ is well supported for odontocetes, work examining how sound is received across the head has been limited to a few representative species. The substantial variation in jaw and head morphology among odontocetes suggests variation in sound reception. Here, we address how a divergent subspecies, the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) hears low-, mid- and high-frequency tones, as well as broadband clicks, comparing sounds presented at different locations across the head. Hearing was measured using auditory evoked potentials (AEPs). Click and tone stimuli (8, 54 and 120 kHz) were presented at nine locations on the head and body using a suction-cup transducer. Threshold differences were compared between frequencies and locations, and referenced to the underlying anatomy using computed tomography (CT) imaging of deceased animals of the same subspecies. The best hearing locations with minimum thresholds were found adjacent to a mandibular fat pad and overlaying the auditory bulla. Mean thresholds were not substantially different at locations from the rostrum tip to the ear (11.6 dB). This contrasts with tests with bottlenose dolphins and beluga whales, in which 30–40 dB threshold differences were found across the animals' heads. Response latencies increased with decreasing response amplitudes, which suggests that latency and sensitivity are interrelated when considering sound reception across the odontocete head. The results suggest that there are differences among odontocetes in the anatomy related to receiving sound, and porpoises may have relatively less acoustic ‘shadowing’.The work was funded by the Office of Naval Research, a Mellon Joint Initiatives Award, the Knowledge Innovation Program of Chinese Academy of Sciences [grant no. KSCX2-EW-Z-4] and the National Natural Science Foundation of China [grant no. 31170501]

    Acoustic recordings of rough-toothed dolphin (Steno bredanensis) offshore Eastern Sicily (Mediterranean Sea)

    Get PDF
    Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3), (2019): EL286-EL292, doi:10.1121/1.5126118.ough-toothed dolphin's abundance and distribution is largely unknown worldwide and evaluation of its conservation status in the Mediterranean Sea is necessary. A rough-toothed dolphin was sighted offshore Eastern Sicily (Mediterranean Sea) in July 2017 and acoustic data were acquired in the same area of Watkins, Tyack, Moore, and Notarbartolo di Sciara [(1987). Mar. Mamm. Sci. 3, 78–82]. An automatic detection algorithm was developed to identify the echolocation clicks recorded within both datasets and a recurrent inter-click interval value was identified during the new encounter. Distinctive whistle classes were also identified with similar contour shapes within both datasets.The research has been partially funded by ONR Award (No. N00014-16-1-3017) and National Natural Science Foundation of China (Nos. 41422604 and 41306169). The authors declare that they have no conflict of interest. They wish to thank Professor Gianni Pavan for the software seapro. F.C. wants to thank the President's International Fellowship Initiative (PIFI) of the Chinese Academy of Sciences. F.C. and V.S. contributed equally to this work.2020-03-2

    Research Progress in Techniques for Postharvest Preservation of Green Sweet Peppers

    Get PDF
    Green sweat peppers are rich in nutrients and diverse in shape and color. Apart from being eaten as a vegetable, it is widely used as seasoning and side dishes. Due to respiration and infection by harmful microorganisms, postharvest green peppers are prone to water loss, wilting and even rot. Appropriate preservation technology can maximize the preservation of nutrients and extend the storage period of green peppers. This paper introduces the techniques used for postharvest preservation of green sweet peppers: physical preservation methods such as refrigeration and packaging, biological preservatives such as microbial, plant and animal extracts, and chemical preservatives such as calcium agents and 1-methylcyclopropene (1-MCP), and compares the advantages and disadvantages of these preservation techniques. It elaborates the effect of chitosan or konjac glucomannan-based composite coatings on preserving the quality of green sweet peppers. Our intention is to provide a reference and guidance for the storage and preservation of postharvest green peppers

    Monitoring of a Nearshore Small Dolphin Species Using Passive Acoustic Platforms and Supervised Machine Learning Techniques

    Get PDF
    Passive acoustic monitoring (PAM) is increasingly being adopted as a non-invasive method for the assessment of ocean ecological dynamics. PAM is an important sampling approach for acquiring critical information about marine mammals, especially in areas where data are lacking and where evaluations of threats for vulnerable populations are required. The Indo-Pacific humpback dolphin (IPHD, Sousa chinensis) is a coastal species which inhabits tropical and warm-temperate waters from the eastern Indian Ocean throughout Southeast Asia to central China. A new population of this species was recently discovered in waters southwest of Hainan Island, China. An array of passive acoustic platforms was deployed at depths of 10–20 m (the preferred habitat of humpback dolphins), across sites covering more than 100 km of coastline. In this study, we explored whether the acoustic data recorded by the array could be used to classify IPHD echolocation clicks, with the aim of investigating the spatiotemporal patterns of distribution and acoustic behavior of this species. A number of supervised machine learning algorithms were trained to automatically classify echolocation clicks from the different types of short-broadband pulses recorded. The best performance was reported by a cubic support vector machine (Cubic SVM), which was applied to 19,215 5-min recordings (∼4.2 TB), collected over a period of 75 days at six locations. Subsequently, using spectrogram visualization and audio listening, human operators confirmed the presence of clicks within the selected files. Additionally, other dolphin vocalizations (including whistles, buzzes, and burst pulses) and different sound sources (soniferous fishes, snapping shrimps, human activities) were also reported. The detection range of IPHD clicks was estimated using a transmission loss (TL) model and the performance of the trained classifier was compared with data synchronously collected by an acoustic data logger (A-tag). This study demonstrates that the distribution and habitat use of a coastal and resident dolphin species can be monitored over a large spatiotemporal scale, using an array of passive acoustic platforms and a data analysis protocol that includes both machine learning techniques and spectrogram inspection

    Sounding the call for a global library of underwater biological sounds

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parsons, M., Lin, T.-H., Mooney, T., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S., Van Opzeeland, I., Radford, C., Rice, A., Sayigh, L., Stanley, J., Urban, E., & Di Iorio, L. Sounding the call for a global library of underwater biological sounds. Frontiers in Ecology and Evolution, 10, (2022): 810156, https://doi.org/10.3389/fevo.2022.810156.Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.Support for the initial author group to meet, discuss, and build consensus on the issues within this manuscript was provided by the Scientific Committee on Oceanic Research, Monmouth University Urban Coast Institute, and Rockefeller Program for the Human Environment. The U.S. National Science Foundation supported the publication of this article through Grant OCE-1840868 to the Scientific Committee on Oceanic Research

    Hearing Sensation Levels of Emitted Biosonar Clicks in an Echolocating Atlantic Bottlenose Dolphin

    Get PDF
    Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of −34, −28, and −22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation

    Auditory temporal resolution and evoked responses to pulsed sounds for the Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197 (2011): 1149-1158, doi:10.1007/s00359-011-0677-y.Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (i) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (ii) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1250 Hz, after which response amplitudes declined until extinguished beyond 2500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well-suited to detect their unique echolocation signals.The work was supported by the Office of Naval Research, a WHOI Mellon Joint Initiatives Award , the Chinese National Natural Science Foundation (grant No: 30730018) and the Institute of Hydrobiology of the Chinese Academy of Sciences2012-09-1

    Do Porpoises Choose Their Associates? A New Method for Analyzing Social Relationships among Cetaceans

    Get PDF
    BACKGROUND: Observing and monitoring the underwater social interactions of cetaceans is challenging. Therefore, previous cetacean studies have monitored these interactions by surface observations. However, because cetaceans spend most of their time underwater, it is important that their underwater behavior is also continuously monitored to better understand their social relationships and social structure. The finless porpoise is small and has no dorsal fin. It is difficult to observe this species in the wild, and little is known of its sociality. METHODOLOGY/PRINCIPAL FINDINGS: The swim depths of 6 free-ranging finless porpoises were simultaneously recorded using a time-synchronized bio-logging system. Synchronous diving was used as an index of association. Two pairs, #27 (an immature female estimated to be 3.5 years old) and #32 (an adult male), #28 (a juvenile male estimated to be 2 years old) and #29 (an adult male), tended to participate in long periods of synchronized diving more frequently than 13 other possible pairs, indicating that the 4 porpoises chose their social partners. The adult males (#32, #29) tended to follow the immature female (#27) and juvenile male (#28), respectively. However, during synchronized diving, the role of an initiator often changed within the pair, and their body movements appeared to be non-agonistic, e.g., rubbing of bodies against one another instead of that on one-side, as observed with chasing and escaping behaviors. CONCLUSIONS/SIGNIFICANCE: The present study employed a time-synchronized bio-logging method to observe the social relationships of free-ranging aquatic animals based on swimming depth. The results suggest that certain individuals form associations even if they are not a mother and calf pair. Long synchronized dives occurred when particular members were reunited, and this suggests that the synchronized dives were not a by-product of opportunistic aggregation
    corecore